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We study via computer simulations (using various serial and parallel updating 
techniques) the time evolution of shocks, particularly the shock width a(t), in 
several versions of the two-dimensional asymmetric simple exclusion process 
(ASEP). The basic dynamics of this process consists of particles jumping inde- 
pendently to empty neighboring lattice sites with rates Pup = Pdown = P• and 
Pleft < Pright" If the system is initially divided into two regions with densities 
Pleft < Prigttt, the boundary between the two regions corresponds to a shock front. 
Macroscopically the shock remains sharp and moves with a constant velocity 
Vshoek=(Pright--Pleft)( 1 --Pleft--Pright)" We find that microscopic fluctuations 
cause cr to grow as t ~, fl ~ 1/4. This is consistent with theoretical expectations. 
We also study the nonequilibrium stationary states of the ASEP on a periodic 
lattice, where we break translation invariance by reducing the jump rates across 
the bonds between two neighboring columns of the system by a factor r. We find 
that for fixed overall density Pavg and reduction factor r sufficiently small 
(depending on Pavg and the jump rates) the system segregates into two regions 
with densities p~ and p2= 1 - p ~ ,  where these densities do not depend on the 
overall density Pavg" The boundary between the two regions is again macro- 
scopically sharp. We examine the shock width and the variance in the shock 
position in the stationary state, paying particular attention to the scaling of 
these quantities with system size. This scaling behavior shows many of the same 
features as the time-dependent scaling discussed above, providing an alternate 
determination of the result fl ,~ 1/4. 
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1. INTRODUCTION 

Macroscopic equations that describe fluid flow result from an averaging 
over the rapidly fluctuating microscopic motion of a large number of 
molecules. (1) This procedure yields deterministic (typically nonlinear) 
partial differential equations for the conserved quantities (momentum, 
energy, mass density)--which vary slowly on the microscopic scale. The 
familiar hydrodynamic equations of motion (Navier-Stokes and Euler) 
which describe the dynamics of fluids are of this form. 

These equations describe quite well what happens to fluids on a large 
scale when the flow is smooth. Problems arise when gradients in the 
hydrodynamic variables become very large and the assumptions made in 
the derivation of the hydrodynamic equations break down--for example, 
where discontinuities (shocks) in macroscopic variables (such as the 
density) appear. We would like to gain a better understanding of these 
situations both at the macroscopic and microscopic levels. 

1.1. The Burgers Equation 

One of the simplest examples of a nonlinear macroscopic equation 
with a single conserved quantity is the Burgers equation, 

6311 
- - u . V u + v A u  (1) 

originally proposed to study turbulence with u representing a velocity 
field(2'3); in our considerations, u will represent a scalar density field. What 
makes the Burgers equation interesting is that initially smooth density 
profiles can evolve after a finite time into traveling wave fronts. The trans- 
itions between low- and high-density regions in these fronts occur in very 
narrow spatial regions--regions with width proportional to x/~. In the 
limit v ---, 0 the profile becomes discontinuous and we say that shocks form. 
If v is finite but small (i.e., microscopic) we may still refer to the narrow 
transition region as a shock. These shocks as given by the Burgers equation 
move with a deterministic velocity. We are interested in what happens to 
shocks when viewed on the microscopic level. 

The non-viscous Burgers equation, with v=0 ,  can be derived 
rigorously from a number of computationally efficient particle models. (1"4) 
The field u represents the space and time rescaled particle configurations, 
i.e., the hydrodynamic limit with Euler scaling in which time and space are 
scaled by a fixed ratio. (Certain special cases with other scalings can result 
in limits with v > 0.) Here we use the asymmetric simple exclusion process. 
On a lattice, particles hop to unoccupied neighboring sites with a drift 
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(asymmetry) along one of the lattice directions. The hard-core exclusion 
(only one particle per site) is the source of the nonlinearity and provides 
for some interesting phenomena. Even on the microscopic scale shocks 
form. At this level, instead of traveling with some definite deterministic 
velocity, there is a fluctuating velocity, due to the initial conditions and the 
dynamics, that must be superposed upon the macroscopic one. Therefore, 
the location of the shock will deviate from the location given by the 
Burgers equation by some fluctuating quantity. (5) 

1.2. The ASEP 

The ASEP is a continuous-time stochastic process in which particles 
occupy sites of the lattice yd and move according to simple rules. 
Configurations in this process are denoted by t/~ {0, 1 )z~, where the indivi- 
dual site occupation variable t/(r) = 1 if r is occupied, and 0 if unoccupied. 
An exclusion rule prevents more than one particle from simultaneously 
inhabiting the same site. Independently and randomly, each particle waits 
for an exponentially distributed time with mean 1 and attempts to jump to 
a neighboring site. If the target site is unoccupied, then the jump succeeds; 
if not, then it fails. An asymmetry enhances jump attempts in one direction 
and induces a net particle current. In the one-dimensional model, a particle 
attempts to jump to the right with rate Pright and to the left with rate Pleft, 
Pright > Pleft, Pright -]- Pleft = 1. In higher dimensions the asymmetry along the 
x axis persists, but the jump rates along both directions of the per- 
pendicular axes are equal (symmetric) and given by p• such that 
Pier, + Pright + 2(d-- 1 ) p• = 1, recalling that d is the dimension. Shocks will 
now correspond to ( d -  1)-dimensional fronts which will fluctuate in space 
and time. 

1.3. Shock G r o w t h  = Surface Growth ;  KPZ Approach 

We may also interpret the shock evolution in the d-dimensional ASEP 
as a model of ( d -  1)-dimensional surface growth where holes are driven to 
the left and stick to the "hole substrate," with the surface of this substrate 
traveling to the right. This interpretation is particularly useful given the 
recent interest in surface deposition models and the kinetic roughening of 
surfaces. (6) The model we describe here is complicated for analysis as well 
as for simulation since we are interested in the statistics of the shock 
( =  surface) and its dependence on a priori unknown properties of the 
ASEP. In other surface problems one usually assumes that the particles (or 
holes) hitting the surface are uncorrelated or have known correlations. One 
can then construct a stochastic partial differential equation which models 
the surface dynamics. 
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Typically the approach to such problems in surface roughening models 
is to introduce a Langevin-type equation which governs the local interface 
position h(r, t), the usual choice being the Kardar-Parisi-Zhang (KPZ) 
equation(V): 

Oh 2 
Ot = Vo + yah + ~ (Vh) 2 + ((r, t) (2) 

The random noise term ~(r, t) is such that 

(((r, t ) ) = 0  (3) 

but otherwise is chosen according to the specific nature of the model being 
studied. (8) 

The KPZ equation provides a phenomenologically based description 
of a growing surface. Each term represents a different aspect of the growth 
process: the constant Vo is the growth rate for a completely flat interface. 
The Laplacian term accounts for surface restructuring as particles diffuse 
on the surface and move to fill gaps, while the nonlinear gradient term 
describes an inclination-dependent growth rate. The noise term represents 
growth due to fluctuations at the microscopic level; without this term the 
KPZ equation (2) can be related to the Burgers equation (1) via the 
transformation u = -Vh. Higher-order terms are not included in the KPZ 
equation because they are irrelevant in the renormalization group sense; 
without toss of generality we change variables h - ,  h -  rot and take Vo = 0. 

1.3.1. Linearized KPZ. We believe that the one-dimensional KPZ 
equation, with the nonlinear term absent (2--0), describes the interface 
behavior of the two-dimensional ASEP. (This reduces to a noisy, linear 
diffusion equation.) We argue this on several grounds. In the first place, the 
nonlinear term arises from the dependence of surface growth on the local 
orientation. In the ASEP, however, the shock velocity is independent of 
surface orientation and so averaging over orientations results in cancella- 
tion of the nonlinear term. (4) 

Second, in the case of weak asymmetry, where p .  is fixed, 
Pright -- Pleft ---- e, space is rescaled by e, and time is rescaled by e 2, it is 
known rigorously that the equation describing the interface fluctuations in 
the limit e ~ 0 is indeed just the linear KPZ equation t9) 

Oh(r, t) 
- -  - yAh(r, t) + ((r, t) (4) 

0t 

with ~(r, t) Gaussian white noise: (((r,  t ) ) =  0 and 

(~(r, t) ~(r', t ' ) )  = K f ( r - r ' )  6 ( t -  t ')  (51 
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where K depends on the asymptotic densities on either side of the interface. 
One can solve (4) exactly by using Fourier transforms; the results for the 
shock width starting with an initially flat interface in a strip of width W 
is (lo) 

f t  ~, t ~ W ~/~ 
if(l) { W ~, t>> W ~/~ (6) 

where 

i2(t) =- f dr Eh(r, t ) -  h(t)3 h ( t ) = _ l  f dr h(r, t) (7) 

W is the width of the system (length of the interface) and the scaling 
exponents are 

c~ = 1/2, fl = 1/4 (8) 

We shall see later that these exponents are indeed consistent with the 
results of our simulations--although the approach to scaling behavior can 
take a very long time. 

1.3.2. Logarithmic Correction. In fact there is a defect in the 
above analysis; the two-dimensional ASEP is known to exhibit super- 
diffusive behavior (11) and thus one should not expect a linear diffusion 
equation to accurately model it. Analysis simular to that of ref. 12 indicates 
that the correct behavior is (13) 

i ( t )  ~ tl/4(log t) 1/3 for tl/4(log t) 1/3 ,~ W 1/2 (9) 

while for tl/4(log t)l/3>~ W 1/2 the result remains W ~/2. This correction is 
sufficiently small that it will be unobservable in any numerical simulation 
likely to be done before the next century, and (4) remains a reasonable 
approximation. 

2. MODELS 

We studied two basic classes of systems undergoing ASEP dynamics: 
the time-dependent behavior of an effectively infinite system, and the 
stationary states of a finite periodic model. 

2.1. Two-Dimensional ASEP--Time-Dependent Model 

The specific system we considered for our time-dependent studies con- 
sisted of a W x L lattice with periodic boundary conditions in the vertical 
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(perpendicular to the field) direction. Parallel to the field no effort was 
made to apply suitable boundary conditions as simulations were always 
ended prior to the arrival of information about the boundaries. In most 
cases we chose the jumps to be totally asymmetric in the parallel direction, 
i.e., we took P~eft = 0. 

Simulat ion of a Cont inuous-T ime Process. Since each lattice 
site has an independent exponentially distributed waiting time for attempt- 
ing a jump, the probability of two sites attempting to jump at the same 
time is zero. Thus we can simulate the ASEP dynamics in discrete time by 
choosing at each time step one site where we attempt to schedule a jump. 
All sites in [ 1, W] x [ 1, L -  1 ] are chosen with equal probability. If the 
chosen site is occupied, we pick a direction e {up, down, right, left} with 
probabilities p•  p•  Pright, and Pteft, respectively. If the nearest neighbor 
site in the chosen direction is unoccupied, the particle jumps to that site; 
if it is occupied, the particle does not move for the given time step. 

2.2. S ta t ionary  Model  

Here we consider ASEP dynamics on an W x L torus. We break the 
translation invariance of this periodic system by inserting a blockage into 
the system between columns L and 1, which reduces the probability of a 
particle traveling between those two columns--a set of "slow bonds" which 
act as a traffic jam for the particles. In the language of driven diffusive 
systems, the introduction of "slow bonds" is similar to altering the driving 
field at this one column. (14) This blockage is analogous to a restriction in 
a pipe through which fluid flows; the corresponding model also provides an 
example of the dramatic global effects caused by a local perturbation in 
conservative systems which do not satisfy detailed balance. (15) It also 
provides an alternate method for observing the same behavior as in the 
time-dependent model. The one-dimensional version of this system was 
examined in ref. 16. 

More specifically, we reduce the jump rates between columns L and 1 
by a factor r, 0 ~< r ~< 1. For  r = 1 the model is translation invariant. For  
r = 0 the model is fully blocked; the stationary state has density one behind 
the blockage and density zero in front of it; there is no current flowing 
through the system. For  0 < r < 1 the model has nontrivial behavior, with 
the stationary state satisfying the requirement that the current through any 
column of bonds must be independent of the column location. 

In this model with a blockage we are not particularly interested in the 
time evolution of the shock, but instead study the properties of the shock 
in the stationary state, and how those properties depend on system size. 
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2.2.1. S imulat ion of  ASEP Dynamics w i t h  Blockage. The 
simulation of the ASEP dynamics in the periodic system with a blockage 
is basically the same as that in the ordinary model. All sites in 
[1, W] x [-1, L]  are chosen with equal probability. If the chosen site is 
occupied, we pick a direction e {up, down, right, left} with probabilities 
P l ,  P• Pright, and Pl~ft, respectively. We now must distinguish between the 
blockage and nonblockage columns. If the chosen site is in column 1 or L 
and the chosen direction is left or right, respectively, then the particle is 
attempting to jump the blockage and the attempt is completed (assuming 
the destination site is vacant) with probability r. Other jumps take place in 
the same fashion as above but are completed (assuming the destination site 
is vacant) with probability 1. 

Of course we must allow an adequate time for this system to evolve so 
that we can be confident that the properties we observe are indicative of 
the stationary state. The necessary time is determined simply by observing 
the time evolution of shock width, position, etc., and waiting until they 
reach asymptotic values. For all system sizes except for the very largest a 
substantial "safety" factor was also included. 

2.2.2. Parallel and Semiparallel  Models.  In order to examine 
very large system sizes, we devised various modifications of the ASEP that 
would permit effective utilization of vector and massively parallel super- 
computers. Unfortunately, attempting to perform updates on all sites at 
once is impossible, as this leads to two or more particles vying for the same 
site. Sublattice updating is a traditional technique; however, it may intro- 
duce spurious correlations into the model. We did have limited success 
with the following variations on sublattice updating: 

1. We were able to consider 32 different realizations of the same size 
system at once by treating each bit of a 32-bit word as an individual 
system. Although the choices for which sites to update were the same for 
all the systems, the choices of directions in each system were independent. 
We were thus able to improve the statistics over that which would have 
otherwise been available; the 32 (correlated) systems appeared to provide 
data equivalent to that which would have been given by approximately 10 
truly independent systems. Most of our data sampling (for both time- 
dependent and stationary models) made use of this procedure. 

2. We considered a partial sublattice updating where 32 sites in each 
column (spaced W/32 apart) were updated simultaneously. Qualitatively 
the model remained the same, but significant correlations were introduced 
at vertical distances of W/32, W/16, etc. None of our quantitative data 
makes use of this procedure. 

822/68/5-6-7 
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3. In an attempt to reduce the correlations introduced by a fixed 
sublattice updating, we decided to examine the possibility of using a 
sublattice which at each step had a random origin and spacing. First fix 
the system width W a s  W=aWlW2W3W4, where all the factors {wi} are 
relatively prime. Thus we have four possible sublattice spacings available. 
Updating proceeds by first choosing a sublattice spacing (stride) wi with 
probability wi/Z wi, then choosing a site, and finally updating that site 
and all (vertical) translates of that site by multiples of wi. For 
W =  9 x 10 x 11 x 13 = 12,870 (a = 1) this allowed us to update between 990 
and 1430 sites simultaneously using vectorized instructions on a Cray 
YMP. This large speedup allowed us to examine systems that were much 
larger than we could have otherwise considered. 

3. T I M E - D E P E N D E N T  RESULTS 

3.1. Shock Ident i ty  

When studying systems with shocks, we can either wait for shocks to 
develop from smooth initial data, or else we can impose them on the initial 
data by hand. We opted for the latter approach, to facilitate computer 
simulation. In either case we must be able to identify the location of the 
shock. We begin by giving a particular operational definition of what is 
meant by a shock at the microscopic level in one dimension. 

Consider the integer lattice Z. On each site x >1 L/2 we independently 
place a particle with probability Po. All sites x < L/2 are empty. Asymmetry 
in the jump rates will drive particles to the right. At time t = 0 we label the 
leftmost particle in the system the "first" particle. As the system evolves, 
there is no reordering of particles, since jumps are to nearest neighbor sites 
only (no crossing). Therefore, this "first particle" label is permanently 
attached to the same particle. If we view the process from the first particle, 
then to the left the density is always zero, while to the right, the density of 
particles approaches P0 at an exponentially (in space) fast rate, where the 
decay length is  1/log(Pright/Pleft). (17) Therefore, we have an abrupt change in 
particle density (over a few sites)--a shock. Accordingly, we define the 
shock to be located at the site containing the first particle, ~ls) and we know 
that even on the microscopic scale the shock remains sharp. Note that this 
picture breaks down when Pright = Pleft; in this case the behavior is purely 
diffusive and the average distance between the first and second particles 
grows like t 1/2. 

In two dimensions this picture needs modification. The asymmetry 
drives particles to the right while allowing for diffusion in the vertical 
direction. What results is a right-moving, rough interface across which 
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there is an abrupt change in average particle density. We also refer to this 
fluctuating interface as a shock. Now, however, the first particle in each 
row is no longer a permanent label, as a result of perpendicular diffusion. 
But the basic principle is still valid, and the most natural and computa- 
tionally efficient way to characterize the shock (when the density is zero 
to the left) is to look at the distribution of first particles in different rows 
(different y values )--see Fig. 1. The instantaneous width is then defined by 
fluctuations in these locations h(y, t) about their average: 

G(t)-  [h(y, 2 (10) 
y = l  

where h(t) is the average location of the first particles, 

1 
h(y, t) (11) h(t) 

y = l  

3.2. Results 

With the exception of some limited runs to check the gross behavior 
with varied parameters, all of our time-dependent simulations were carried 
out with an initial particle density of po=0.5  and with jump rates 
Pright = 0.75, Plert = 0, and p• = 0.125. The field drove particles to the right 
and holes to the left. Since particles eventually moved away from the left 
wall (and were not replenished) and holes moved away from the right wall 
(and were not replanished), we were left with particle substrate on the right 
of the system, moving to the left, and the hole substrate on the left, moving 
to the right. Particle-hole symmetry (at Po = 0.5) implies that they should 

l 
! /  

= z 

I 
m l  
I - ' -  
L . .  , , 

B 

Fig. 1. Example of a particle configuration and the resulting shock position h(y, t). 
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have the same behavior. With this approach we were able to study the 
statistics of two nearly independent shocks at once. 

In Fig. 2 we compare the width of the shock interface for system 
widths W =  256 and W =  1024; in each'case the data are averaged over 75 
independent runs. The available run time was not long enough for the 
shock width to saturate, although the effect of the finite system width is 
apparent as we see the W= 256 and W= 1024 curves separate for t > 400. 
We expect that for W large enough there will be an "asymptotic" time 
regime for the growth of a(t) before it saturates, with behavior given by 
Eqs. (6)-(8). 

The results in Fig. 2 indicate that the growth of fluctuations has not 
reached the asymptotic (in time) regime. If we think of the exponent fl 
characterizing this growth as a time-dependent quantity, then / / -*  0.17 for 
the longest times that we were able to observe (in the W= 1024 system), 
and is apparently still increasing. It may be that the long-time behavior will 
still be consistent with the predictions of the linear KPZ equation given in 
(6) (8), but that the approach to this asymptotic behavior is extremely 
slow. 

There appear to be two reasons for this slow convergence. First, the 
shock width at t = 0  does not strictly vanish. There are fluctuations 
inherent to the initializing process of setting down particles randomly with 
probability Po. This accounts for a "zero-point fluctuation" of a few lattice 
spacings. We can eliminate this effect by starting with an artificially per- 
fectly flat interface. The true asymptotic behavior will not be affected by 
this. 

This, however, is not the main problem--the main difficulty is that 
there are natural, short-wavelength fluctuations which result from the 
dynamics and form at an early time. Letting <. ) represent an average over 

4 . . . . . . . .  i . . . . . . . .  i 

+ 

2 , , , , , , , , I  

10 100 
i i i i i i i l l  

1000 

F ig .  2. S h o c k  w i d t h  vs.  t i m e  fo r  W =  256 ( q )  a n d  W =  1024 ( + ) .  
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the random dynamics, i.e., a sampling average, we see that there is a 
natural separation distance (]h(y, t ) - h ( y +  1, t )])  between the shock 
locations in neighboring rows, which builds up rapidly and then saturates. 
If the perpendicular jump rate is small, then this length can be quite large. 
In this case, p• ~ Pleft + Pright ,  neighboring rows are essentially noninter- 
acting for long periods of time. The first particles in each row then execute 
a random walk relative to each other and can become quite distant. As 
their distance increases, it becomes more probable to have a transition 
from one row to another which will reduce the distance between the first 
particles in the two rows. These perpendicular transitions prevent the first 
particles in neighboring rows from moving arbitrarily far from each other 
(confinement), and thus ~ Ih(y, t ) -  h(y + 1, t)] ) approaches an asymptotic 
value. For the jump rates we used, we found that this natural extension was 
on the order of a few lattice spacings, just enough to mask the overall 
shock broadening, which was typically less than eight lattice spacings. 

This latter problem could not be eliminated with a simple adjustment 
of the initial conditions or jump rates. Therefore, we looked at other 
manifestations of shock broadening which in the asymptotic time regime 
should be equivalent to the shock width defined above. Defining 

G(m, t ) =  {h(y, t) h(y + m, t) ~ -  {h(y, t ) )  2 (12) 

we see that G(0, t) = o-2(t) .  For m = 1 or 2, G(m, t) represents the nearest 
(row) neighbor, m = 1, and next nearest neighbor, m = 2, truncated first 
particle correlation functions. These functions have none of the t = 0 
fluctuations mentioned above and will be affected to a much lesser extent 
by the short-wavelength fluctuations. In fact, G(1) differs from G(0) by 
exactly the nearest-neighbor fluctuations: 

G(0, t) - G(1, t) = �89 [h(y, t ) -  h(y + 1, t)] 2) (13) 

In Fig. 3 we show these functions and include the width (m = 0) for 
comparison. Note that for m = 1 and m = 2 that the "effective growth 
exponent," characterized by the slope of the tangent to this curve, 
is actually greater than 0.25 and is decreasing. For  the width m = 0 it is 
increasing. 

As well as studying G(m, t) for fixed m and varying t, we considered 
the complementary case of fixed t and varying m. The results appear in 
Fig. 4. The self-correlation (m = 0) is the square of the shock width. 

As G(m, t) decays exponentially in m (for m not too large), we can 
define a correlation length along the shock, ~li(t), determined by 

G(m, t)~exp[--m~ld(t)] (14) 
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Fig. 3. 

. . . . . . . .  i . . . . . . . .  i 

O �9 0 0 � 9  

C1/2(ra, t) 1 

+ 0  
+ [] 
[] 

+ 
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t 

Time dependence  of G(m, t) for W =  1024. Here  m = 0 ( ~ ) ,  m = 1 ( + ), m = 2 ( [ ] ) .  

Line has  slope 1/4. 

for small m. In Fig. 5 we show time evolution of the correlation length. The 
asymptotic behavior corresponds to a diffusive growth: ~H "~ tin; this is in 
agreement with the evolution determined by Eq. (4). Note that the initial 
behavior is much more rapid as the short-wavelength fluctuations develop. 

3.2.1. kinearized Surface Equation. The short-wavelength fluc- 
tuations in the ASEP are of the same order of magnitude as the shock 
width and therefore mask its growth. We checked to see if this behavior 
persisted in a discretized version of the linear (1D) KPZ equation, where 
we know the asymptotics exactly. Consider the discretization of (4): 

h(y, t+l)-h(y, t)=O[h(y-l , t )-2h(y, t)+h(y+l, t)]+?~(y, t)  (15) 

14 

12 t 

10 

8- 

a(m,t) 6' 

4 

2 

0 

-2 
0 

I I I I I I 

20 40 60 80 100 120 140 
m 

Fig. 4. Cor re la t ions  a long  the shock  at  t imes 36 ( ~ ) ,  133 ( + ) ,  and  662 ( [ ] ) .  
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0 . 1  , , , , , ~ ,,I , , , . . . . .  I 

1 0  1 0 0  1 0 0 0  
t 

Fig. 5. Growth of correlation length. W =  1024. Line has slope 1/2. 

The noise term ( is Gaussian with covariance 

( ( (y ,  t) ( (y ' ,  t ') ) = 6 ( y  - y ' )  6 ( t  - t ' )  (16) 

We solved for the time dependence of the shock width and m =  1 
correlations by simulating the process governed by (15) and (16). The size 
of the system (corresponding to the length of the interface which is the 
dimension of the ASEP perpendicular to the field, i.e., W) was 10,000 sites, 
and we averaged over 50 independent samples. The diffusion constant is 
D = 0.5, and the noise amplitude is ? = 0.5. These parameters were chosen 
to compare with the results of the ASEP simulations. The initial conditions 
on h ( y ,  t)  were equivalent to what would result from the initialization 
process outlined above with a density P0 = 0.5. 

What we found was qualitatively very similar to the simulations of the 
ASEP, and is presented in Fig. 6. Namely, we observed an initial regime of 

Fig. 6. 

Cv2(m, t) 

I i , i i i  ~ i , i i i i i i  i t , , , i ~ l  

1 0 0  1 0 0 0  1 0 0 0 0  

t 

G(m, t) for a discretized linear KPZ equation, m=O ( ~ )  and m =  1 (+ ) .  Solid line 
has slope 1/4. 
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fast growth in the nearest neighbor correlation function G(1, t) and an 
eventual tapering off of the effective time-dependent exponent. Meanwhile, 
for G(0, t) (shock width squared) we found that the effective growth rate 
increased with time consistent with an exponent fl = 1/4. 

3.2.2. Compatibility with Existing Theory. We have presented 
computer simulations of the two-dimensional asymmetric simple exclusion 
model. The growth of the shock width in the ASEP is consistent with the 
current theory, but the natural width inherent to the dynamics makes it 
difficult to strengthen this claim. Since similar behavior is also observed 
in simulations of the discretized interface equation, we are, however, 
supportive of the linear theory. 

4. Stationary Results 

When we study the stationary state of our periodic model with a 
blockage, we have an advantage over the time-dependent case in that we 
need not worry about initial conditions--only the total particle number is 
relevant. Thus we need not worry about the best way to produce a shock, 
e.g., whether we should use a checkerboard pattern or a simple product 
measure. However, this lessens the freedom we have in determining the 
type of shock that results. Since a shock in the stationary state must have 
no net drift, the densities on either side must be symmetric with respect to 
the density 1/2 (the shock velocity, which must be zero in the stationary 
state, is given by Vshock = 1--Pleft--Pright)" Thus the simple technique of 
identifying the shock by the first particle in each row, valid for P~eft = 0, will 
not be effective. 

4.1. Shock Identity 

The difficulty of identifying the shock also appeared in the one- 
dimensional case, 116) where a so-called second-class particle (19) was used to 
track the shock. The second-class particle is an extra particle added to the 
system, which is treated as a hole in exchanges with particles and as a 
particle in exchanges with holes; this does not change the dynamics of the 
original particles. When the second-class particle is in a high-density region 
(of ordinary particles), it is forced to the left by the particles jumping (to 
the right) and landing on it; when it is in a low-density region, it moves to 
the right. 

In two dimensions one can also add second-class particles to the 
system, but as they can diffuse from row to row, we no longer have a single 
second-class particle associated with the shock position in a given row. One 
possibility is to add a large number of second-class particles to the system 
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and determine their distribution, unfortunately a computationally intensive 
procedure. 

The second-class particle is actually a much more powerful tool than 
we need for determining the shock position, so we discard it in favor of 
something simpler. The motion of the second-class particle is basically that 
of a biased random walk with a drift toward the shock position; instead 
of second-class particles, we introduce shadow particles whose dynamics 
is exactly that of a biased random walk with a drift toward the shock 
position. These shadow particles do not affect the motion of the ordinary 
particles, but move in a "potential" determined by the ASEP configuration. 
Specifically, after each sweep of Monte Carlo updates, each shadow 
particle (of which there is one per row) moves according to the following 
rule: 

h(y, t + 1) = ~h(y, t) with probability 1/4 
[h(y, t ) - s (h (y ,  t), y; t) with probability 3/4 (17) 

where s(x, y; t )=  1 if there is a particle at site (x, y) at time t, and 
s(x, y; t ) =  - 1  if there is no particle there. Thus the shadow particles move 
to the left in regions of high density and to the right in regions of low 
density, driving them toward the shock where these regions meet. The 
probabilities 1/4 and 3/4 were chosen simply for convenience; other similar 
rules for the shadow particle evolution were tried but did not yield 
significantly different behavior. 

Note that we continue to label the location of the surface by h(y, t), 
even though our definition of this location has changed from the time- 
dependent case, where we made use of the first particle position, since both 
definitions represent the same physical idea. Ideally, one would like to 
allow the "shadow" random walk to evolve for a long time for each given 
ASEP configuration; under such conditions it is clear that the shadow 
particles will accurately identify the shock position, provided a shock does 
in fact exist. The ratio of one shadow update per ASEP Monte Carlo step 
is a compromise between the need to identify accurately the shock position 
and the desire to reduce the computational load of tracking it. 

Q u a n t i t i e s  S t u d i e d .  We were interested in studying both the 
shock profile as well as its fluctuations. To this end we computed the 
following quantities from the sampled shock positions h(y, t), where ~- )  
represents a sampling (i.e., time) average: 

1. The average shock position 

h(y, t) = - ~  <h(y, t ))  
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. The variance in the shock position 

<6=> = < [ h ( t ) -  < h > ] 2 >  

3. The average shock width 

y 1 

4. The rms shock width 

. 

) 1/2\ 

I ) 

"~ \ 1 / 2  

y=l 

The truncated height-height correlation function 

( G(m) ) = (h(O, t )h (m,  t ) - h 2 ( t )  ) 

= [h(y,  t) h (y  + m, t) - h2(t)] 

4.2. Results 

We attempted to determine the behavior of the shock width as we 
varied the size of our system. We found that if either the system size L or 
the system width W was taken very large, the shock width approached an 
asymptotic value. Thus we were able to reduce our two-parameter system 
to a single parameter, by considering the regimes L ~> W and L < W. 

For  L>> W, the finite width of the system prevents the shock from 
growing indefinitely. This behavior should correspond to growth saturation 
in the time-dependent case. We present our data for a system with 
Pavg - 0 " 5 ,  Pright = 0 . 7 5 ,  p• =0.125, and r=0 .25  in Fig. 7. The error bars 

r 0 O 0 0 r  

o o I 
r 0 

/ (aO)) 1/2 o 
0 

i i i i i i l l  i J i = i i l l 1  

10 100 
w 

Fig. 7. Shock width vs. system width W for L ~> W. Solid line has slope 0.5. 
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(three symbols are plotted for each measurement: the actual value and that 
value shifted up or down by the error bound) represent statistical error 
based on the approximate number  of independent samples selected from 
the steady state in each system. To fully saturate the shock width required 
that we consider a system length of 3200 for a system width of 180; 
typically we had L ~> 16 W. 

We only plot the data for the rms shock width; the average shock 
width behaved similarly. Along with ( a  2)1/2 we plot the nearest neighbor 
correlation (G(1))I /2,  which should have the same asymptotic behavior as 
the shock width. The difference between the two is due to the short- 
wavelength fluctuations, just as in the time-dependent case. It is clear that 
we are just beginning to access the asymptotic behavior; our results are 
consistent with a = 0.5, but cannot be considered conclusive. 

For  L <~ W, the finite width of the system is irrelevant to the width of 
the shock. In this case the system length L determines the shock width. We 
present our data for a system with Pavg = 0 .5 ,  Pright =0.75, pz  = 0.125, and 
r=0 .125  in Fig. 8. To reach the asymptotic shock width for the longest 
system, L = 360, required a system width of 720; typically we had W >  2L. 

If we associate length with time, we should expect to see the same 
exponent fl as we saw in the time-dependent case, i.e., 

<O. 2 ) 1/2 ~ L ~ ~ t p ,,~ a(t)  (18) 

Indeed, our results are consistent with fl = 0.25. 
In an at tempt to examine systems larger than 720 x 360, we used the 

random-sublattice updating technique described earlier. With a system 
width of 12870 we were able to examine lengths up to 800 and be quite 
sure that the finite width of the system was not affecting the shock width. 
We present the data from our semiparallel model in Fig. 9. The parameters 
are the same as for Figure 8, and the data is in fact very similar. 

Fig. 8. 
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Fig. 9. 
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Shock width vs. system length L for the semiparallel update model. Solid line has 
slope 0.25. 

We should be somewhat careful in interpreting the results from our 
semiparalM model, because there are differences from the serial model. In 
Fig. 10 we plot the height-height correlation function G for the ASEP with 
length L = 64 and width W= 256, along with the semiparallel model with 
the same length. Although both systems have an initial exponential decay, 
the serial model has a significantly larger "dip" of negatively correlated 
surface heights than that which we see in the semiparallel model. 

The basic structure of the shock seems to be fairly impervious to 
the details of the model. The scaling behavior of its intrinsic width, for 
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Fig, 10. Height-height correlation function. 
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example, does not depend upon the overall density Pavg" On the other 
hand, the location h and the fluctuations of that location do depend upon 
Pavg, specifically, whether or not Pavg =0.5. This is the same behavior 
observed in the one-dimensional model, where the shock fluctuations were 
reduced when there was particle-hole symmetry. ~16) 

For  a system where L > W, we would expect the system to be effec- 
tively one-dimensional, and we recover the one-dimensional results. ~ For 
Pavg#0.5,  we expect < [ h ( t ) -  < h > ] 2 >  1/2 t o  scale like L ]12. In Fig. 11 we 
plot the shock fluctuation, rescaled by the square root of the system width, 
against the system length. The system parameters are pavg=0.5625, 
Pright ~" 0 .75 ,  p •  = 0.125, and r = 0.25. It is clear from these data that 

L <62> = < I-h(t)- <]~>12> ~-~ (19) 

The collapse of the data shows that this scaling is valid even for quite 
narrow systems ( W = 4 ) .  Thus the Pavg~0.5,  two-dimensional system 
behaves as a collection of W independent one-dimensional systems, at least 
as far as the overall fluctuations of the shock position is concerned. 

The situation is different when Pavg = 0.5. The only difference between 
the data in Fig. 12 and those in Fig. 11 is that in Fig. 12 we have Pavg = 0.5. 
Here the rescaled data for different system widths superimpose on each 
other only for L small (compared with W). Examining the data in Fig. 12 
carefully, we see that the fluctuations for each width cross over from L V4 

behavior to L t/3 behavior, with the crossover point increasing with W. 

I0 

' ' ' ' ' I ' ' ' ' ' ' ' I 

i I i i i I 
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1000 10000 

L 

Fig. 11. Rescaled shock fluctuation: W 1/2< [h(t) - (/~ > ] 2 > 1/2 vs. system length L. Average 
density different from 1/2. The dotted line has slope 1/2. 
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The fact that the data superimpose for small L indicates that in this regime 
fluctuations scale as L1/4/Wm, while the L 1/3 behavior scales with a power 
of W different from 1/2. To get a better handle on this phenomenon, we 
plot the rescaled fluctuations against the system width in Fig. 13. For 
L >> W the slope approaches - 1/6, which indicates that the fluctuations 
scale a s  LI/3w-1/2-1/6~LI/3/W 2/3. While we do not have a complete 
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understanding of this exponent, its makes sense from general scaling 
arguments, as the crossover from L 1/4 to L 1/3 occurs when 

L 1 / 4 / W  t/2 ~ L 1 / 3 / W  2/3 (20) 

or when L ~ W2--i.e., we observe one-dimensional behavior when particles 
have a chance to diffuse across the entire width of the system. 

We can also think of the system at L >> W as a pseudo-one-dimen- 
sional system where the noise is reduced from that in the one-dimensional 
ASEP because of the average over the width. If we insert a noise intensity 
parameter  I into the (one-dimensional) K P Z  equation (2), i.e., the fluctuat- 
ing Burgers equation, (8' 12) yielding 

= v \ a x J  + I (x, t) (21) 

then effectively I ~: W 1/2. A scaling analysis of Amar and Family ~2~ 
indicates that fluctuations in h are proportional  to 14/3, so that we obtain 
fluctuations proportional  to W -2/3. This factor multiplies L 1/3, which is the 
behavior of the fluctuations in the one-dimensional system. ~ 23) This 
is confirmed by simulations we have performed on the one-dimensional 
ASEP. ~24) For  hole density Ph ( = 1 - p) we find that the fluctuations in the 
shock position scale as p~/3t 1/3, which is consistent with ref. 20, since I N  p2. 

This crossover point also makes sense from the point of view of under- 
standing the L 1 / 4 / W  1/2 behavior of the fluctuations in the shock position, 
and connects this with the L u4 behavior of the shock width. For  L,~ W 2 
treat each row of the system as an almost independent one-dimensional 
ASEP. By "almost" we mean we allow coupling only through the total 
density in each row; otherwise the rows are treated independently. 

If a particular row has a density of p . . . .  its (local) shock position will 
have variance proport ional  to [Prow--1/2[ L. (16) The diffusive coupling 
between rows will produce fluctuations in P~ow-1/2 that are O ( L - m ) .  

Table I. Scaling Behavior for the Variance in Shock Position 
(6 z) and Shock Width  (ira) 1/a 

Pavg = 1/2 

L ~  W L,~ W L>> W 

(6 2 ) L2/3/W 4/3 L l/2/W 

( 6 2 )  1/2 WI/2 L I/4 W1/2 

Pavg ~ 1/2 

L , ~ W  

L/W 

LI/4 
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Thus, the typical deviation of the local shock from the center of the system 
is [O(L 1/2)L-]l/2= 0(L1/4). This is the correct contribution to the shock 
width. The overall shock position is the average of the local shock position; 
we are treating each of the W local positions as an independent random 
variable, so the standard deviation of the average is W-mO(Lt/4).  Of 
course this neglects the L 1/3 term, which must eventually be larger. 

Our results for the stationary model are summarized in Table I. 

5. DISCUSSION 

5.1. Relationship Between Stationary and Time-Dependent 
Models 

Studying the time-dependent behavior of the ASEP is significantly 
different from studying the stationary states of the ASEP with a blockage. 
While there is no rigorous argument that the same exponents should 
describe both the time-dependent and size-dependent scaling of the shock 
width, it is not suprising to expect that they are the same, considering that 
the underlying physics is identical in both models. Namely, the transit time 
for traversal of the distance from block to shock is of order L, so that if 
the time dependence is t B, the length dependence should be L B. The 
experimental correspondence is unmistakable--Fig. 3, where we plot the 
correlations G vs. time t, and Fig. 8, where we plot the correlations vs. 
system length L, are virtually copies of each other. 

Of course, our only interpretations of this phenomenon are heuristic. 
Although it is clear that fluctuations due to the transit time wilt produce 
L B behavior, we can not exclude the existence of stronger noise sources 
which would overwhelm this behavior--which in fact we do observe when 
particle-hole symmetry is broken. 

5.2. Difficulties 

The precise determination of scaling exponents, particularly small 
ones, is often not a straightforward task. This is especially true if one is 
limited in analyzing the range over which the scaling holds. In our case the 
constraints on simulation run-time, due to lattice size and computer 
memory considerations, proved crucial. 

There were several options available to us which would have alleviated 
these problems, but all involved tampering with the ASEP dynamics, 
usually by destroying (or introducing spurious) correlations--small pertur- 
bations in models such as the ASEP that have a conservation law but do 
not satisfy detailed balance can have dramatic global effects. ~ It was 
precisely the ASEP, and not some approximate variant, that we wished to 
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study. As a result, we were forced to simulate a truly two-dimensional 
problem and not just some restricted (effectively one-dimensional) domain 
containing the shock surface. 

5.3. Paral lel  vs.  Seria l  M o d e l s  

The future of large-scale scientific computing will rely on massively 
parallel computers and thus systems with parallel dynamics. As opposed to 
certain disciplines where the utilization of parallelism has been difficult, 
there are no inherent problems with the use of parallelism in physics-- 
certainly "real-world" dynamics are parallel. However, although they may 
not accurately represent the real universe, serial models are generally more 
amenable to analytical study. (4) 

We attempted to utilize parallel models that differed only very slightly 
from the original serial models. Even so, we observed behavior that was 
significantly different in certain respects. Thus the parallel dynamics must 
be checked carefully for consistency with the serial dynamics. 

5.4. O t h e r  M o d e l s  

5.4.1. N o n i n f i n i t e  T e m p e r a t u r e .  The ASEP dynamics can be 
viewed as the infinite-temperature limit of a driven diffusive system where 
the jump rates of the particles depend on the local environment. Models 
with temperature are clearly more realistic models than those without it, 
and the immediate question is whether or not the behavior we have 
observed is limited to the infinite-temperature case. 

In one dimension we have found no significant difference in the 
behavior between infinite-and finite-temperature models. The addition of 
temperature makes the determination of the dependence of the current on 
the density more difficult, but once this has been done, the shock fluctua- 
tions scale as predicted by the fluctuating Burgers equation {with the 
appropriate J vs. p behavior). (24) 

In two dimensions many driven diffusive systems exhibit a phase 
transition(25"26); the low-temperature behavior is qualitatively different from 
the ASEP. At higher temperatures, the behavior is at least qualitatively 
similar to the ASEP, in that shocks form and we can have segregation 
perpendicular to the field as in our stationary model, (14) but we have no 
detailed data on the behavior of the interface. 

5.4.2.  N o n l a t t i c e  M o d e l s  (e .g. ,  M o l e c u l a r  D y n a m i c s ) .  In 
addition to studying more realistic lattice models, it would be interesting to 
examine the behavior of models in continuous space. Specifically, we would 

822/68/5-6-8 
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like to study via nonequilibrium molecular dynamics simulations ~27) the 
statistics of shocks that form when a compressible fluid is forced to flow 
through a pinched tube. 
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